Smarandache curves for spherical indicatrix of the Bertrand curves pair

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoperimetric Inequalities for Immersed Closed Spherical Curves

Let a: Sl ->S2 be a C2 immersion with length L and total curvature K . If a is regularly homotopic to a circle traversed once then L2 + K2 > 4n2 with equality if and only if a is a circle traversed once. If a has nonnegative geodesic curvature and multiple points then L + K > An with equality if and only if a is a great circle traversed twice.

متن کامل

The Smarandache Curves on S21 and Its Duality on H20

Curves as a subject of differential geometry have been intriguing for researchers throughout mathematical history and so they have been one of the interesting research fields. Regular curves play a central role in the theory of curves in differential geometry. In the theory of curves, there are some special curves such as Bertrand curves, Mannheim curves, involute and evolute curves, and pedal ...

متن کامل

Order One Invariants of Spherical Curves

We give a complete description of all order 1 invariants of spherical curves. We also identify the subspaces of all J-invariants and S-invariants, and present two equalities satisfied by any spherical curve.

متن کامل

Special Bertrand Curves in semi-Euclidean space E4^2 and their Characterizations

In [14] Matsuda and Yorozu.explained that there is no special Bertrand curves in Eⁿ and they new kind of Bertrand curves called (1,3)-type Bertrand curves Euclidean space. In this paper , by using the similar methods given by Matsuda and Yorozu [14], we obtain that bitorsion of the quaternionic curve is not equal to zero in semi-Euclidean space E4^2. Obtain (N,B2) type quaternionic Bertrand cur...

متن کامل

Complexity of Planar and Spherical Curves

We show that the maximal number of singular moves required to pass between any two regularly homotopic planar or spherical curves with at most n crossings, grows quadratically with respect to n. Furthermore, this can be done with all curves along the way having at most n + 2 crossings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática

سال: 2018

ISSN: 2175-1188,0037-8712

DOI: 10.5269/bspm.v38i2.33899